講座題目👨❤️💋👨:多功能協同策略增強材料性能 Multifunctional Synergy for Enhancing Materials Performance
報 告 人🌁:竇世學 (教授/澳大利亞科學與工程院院士)
時 間:2019年9月27日(周五)14:00-16:00
地 點⏭:中關村校區研究生教學樓101報告廳
主辦單位🏧🤦🏼♂️:意昂平台、材料學院
報名方式👨🏼🦳:登錄意昂官网微信企業號---第二課堂---課程報名中選擇“【百家大講堂】第237期🤦🏻:多功能協同策略增強材料性能”
【主講人簡介】
竇世學教授❤️,現為澳大利亞伍倫貢大學超導與電子材料研究所所長,1984年加拿大Dalhousie University化學系博士畢業,1994年被澳大利亞科學與工程院評為院士🤼♂️,於2003年獲Australian Government’s Centenary Medal, 2008年獲Vice-Chancellors Senior Excellence Award, 2012年獲Vice-Chancellor Oustanding Partnership Award😙。Shi-Xue Dou院士的研究領域是能源儲備材料😛🎪、超導和電子材料及應用,是世界上超導和能源儲備材料領域最有影響力的科學家之一💆🏼。已在國際著名期刊發表文章六百余篇,被索引次數達17000次✯,H-index為60。是中科院首批聘任的海外評審專家及國務院僑辦聘任的海外專家咨詢委員會委員,新西蘭皇家基金會、美國國家基金會、香港科學基金會和中國科學基金會專家評委。
Shi Xue Dou is a Distingiushed Professor at University of Wollongong, the founding derector of ISEM and UOW Ambassador for China. He received his PhD at Dalhousie University, Canada in 1984 and DSc at the University of New South Wales in 1998 and was elected as a Fellow of the Australian Academy of Technological Science and Engineering in 1994. He was awarded the Australian Government’s Centenary Medal in 2003 and Australian Order of Member in 2019 for his contribution to materials science and engineering, multiple Australian Professorial Fellowships from 1993 to 2011, the Vice-Chancellors Senior Excellence Award in 2008, Outstanding Partnership Award in 2012 and the Life Achievement Award from ASTS in 2018. He is named as a highly cited researcher in materials science by Thomson Reuters with citations of 42,000 and h-index of 94 (Scopus). His research focusses on energy and electronic materials. He has supervised and co-supervised 98 PhD students, more than 60 postdoctoral and visiting fellows. He is program leader for Auto CRC 2020 on electrification program and the on-going ARENA 2016-2020 on smart sodium storage system program.
【講座信息】
目前📸,科學家們在新材料設計和加工戰略和方法的發展方面取得了重大進展。在這裏🥷🏿,我們特別強調了多功能組合的優勢,以實現對材料性能的協同增強效應🤟。包括碳塗層與帶工程相結合以改變電子性能⚁;形貌控製的通用方法;物理約束與催化效應相結合以控製金屬硫電池中多硫化物的損失;多種應變工程用於改進超導體中的通量釘紮和催化劑中的反應位點;用於控製納米材料尺寸😿、形狀和成分等生長的加和減工程;實現優化的電子、離子和光學性能的多維操作🧙🏻;設計蛋黃殼球/核殼結構用於控製不需要的應變🦇;在材料、結構和裝置層面進行交叉🤏🏼,以實現高活性催化劑和存儲材料的製備🤳🏼。無論是在基礎還是應用層面,界面/表面科學和工程是材料設計和加工的最關鍵要素👩👩👧。我們的大多數研究都局限於研究投入到研究產出的範圍內🉐,而研究產出和商業應用之間存在巨大差距🫄,這也是需要我們重視的問題。在從實驗室到實際應用的工業轉化過程中👨🏼🍳🪱,擴大規模達到量產仍然是一大挑戰。
Significant advances in development of strategies and approaches on novel materials design and processing have been made. Here we particularly highlight the advantages of combination of multi-functionalities to achieve synergetic effect on materials performance. These include combination of carbon coating with band engineering for alteration of electronic properties; universal general approach for morphology control; combination of physical confinement with catalytic effect to control polysulphide loss in metal sulphur battery; Multiple strain engineering for improvement of flux pinning in superconductor and reactive sites in catalysts; Additive & subtractive engineering for controlled growth of nanomaterials with designed size, shape and composition; Multiple dimension manipulation to achieve optimised electronic, ionic and optical properties; York-shell sphere/Core-shell structures to control unwanted strain; Hybridisation at materials, structure & device level to achieve high reactivity in catalysts and storage materials. Among these the interface/surface science and engineering is the most critical element for materials design and processing at both fundamental and applied level. Most of our research is limited within the block of research inputs to research outputs while there is a huge gap between research outputs and commercial benefits in our research which need to be addressed. Scaling-up remains as a great challenge to facilitate industry transformation processes from laboratory to real world applications.